Start science Die „Goldenen Regeln“ zur Konstruktion atomarer Massen

Die „Goldenen Regeln“ zur Konstruktion atomarer Massen

0
Die „Goldenen Regeln“ zur Konstruktion atomarer Massen
Goldene Regeln für den Aufbau atomarer Massen

Das Uhrenmodell zeigt eine Rotationsausrichtung zwischen dem Stundenzeiger (oberes hBN), dem Minutenzeiger (mittleres Graphen) und dem Sekundenzeiger (unteres hBN). Die Kombination aus oberem hBN, mittlerem Graphen und unterem hBn führt zu einer Moiré-Übergitterstruktur in der Mitte der Uhr. Bildnachweis: National University of Singapore

Physiker haben eine Technik zur präzisen Ausrichtung superwellenförmiger Gitter entwickelt und damit die Möglichkeit der nächsten Generation wellenförmiger Quantenmaterie revolutioniert.

Physiker der National University of Singapore (NUS) haben eine Technik zur präzisen Steuerung der Ausrichtung superschwankender Gitter mithilfe einer Reihe goldener Regeln entwickelt und damit den Weg für die Weiterentwicklung der nächsten Generation wellenförmiger Quantenmaterie geebnet.

Supermoiré-Gitter

Moiré-Muster entstehen, wenn zwei identische periodische Strukturen mit einem relativen Torsionswinkel zwischen ihnen oder zwei verschiedene periodische Strukturen, aber mit oder ohne Torsionswinkel überlagert werden. Der Torsionswinkel ist der Winkel zwischen den Kristallorientierungen der beiden Strukturen. Zum Beispiel wann Graphen Bei hexagonalem Bornitrid (hBN) handelt es sich um Materialien mit übereinander liegenden Schichten, bei denen die Atome in den beiden Strukturen nicht perfekt ausgerichtet sind, wodurch ein Muster aus Interferenzstreifen entsteht, das sogenannte Moiré-Muster. Dies führt zur elektronischen Rekonstruktion.

Das Moiré-Muster in Graphen und hBN wurde verwendet, um neue Strukturen mit exotischen Eigenschaften wie topologischen Strömungen und Hofstadter-Schmetterlingszuständen zu erzeugen. Wenn zwei Moiré-Muster übereinander gestapelt werden, entsteht eine neue Struktur, ein sogenanntes Moiré-Netzwerk. Im Vergleich zu herkömmlichen Einzelwellenmaterialien erweitert dieses Ultrawellennetz den Bereich der einstellbaren Materialeigenschaften und ermöglicht den potenziellen Einsatz in einem viel breiteren Anwendungsspektrum.

Erfolge des Fachbereichs Physik der NUS-Universität

Ein Forschungsteam unter der Leitung von Professor Arriando vom Fachbereich Physik der National University of Singapore entwickelte eine Technik und erreichte erfolgreich die kontrollierte Ausrichtung des hBN/Graphen/hBN-Supermoirés. Diese Technik ermöglicht die präzise Anordnung zweier Moiré-Muster übereinander. In der Zwischenzeit haben die Forscher auch die „Goldene Dreierregel“ formuliert, um den Einsatz ihrer Technologie zur Schaffung von Super-Ripple-Netzwerken zu steuern.

Die Ergebnisse wurden kürzlich in der Fachzeitschrift veröffentlicht Naturkommunikation.

Supermoiré-Netz mit gedrehten Ecken

Künstlerische Darstellung des supermofferierten Gitters mit verdrehten Winkeln (θt und θb), das zwischen Graphen, der oberen Schicht aus hexagonalem Bornitrid (T-hBN) und der unteren Schicht aus hexagonalem Bornitrid (B-hBN) gebildet wird. Eine leichte Fehlausrichtung führt zur Bildung eines superschwammigen Gittermusters. Bildnachweis: Nature Communications

Herausforderungen und Lösungen

Es gibt drei Hauptherausforderungen bei der Schaffung eines extrem schwammigen Graphengitters. Erstens hängt die herkömmliche optische Ausrichtung stark von geraden Kanten des Graphens ab, aber die Suche nach einem geeigneten Graphen-Wafer ist zeitaufwändig und arbeitsintensiv; Zweitens besteht selbst bei Verwendung der Graphenprobe mit geraden Kanten eine geringe Wahrscheinlichkeit von 1/8, ein doppelt ausgerichtetes Moiré-Gitter zu erhalten, aufgrund von Unsicherheiten hinsichtlich der Kantenasymmetrie und der Gittersymmetrie. Drittens: Obwohl Kantensymmetrie und Gittersymmetrie bestimmt werden können, sind Ausrichtungsfehler oft groß (größer als 0,5°), da es physikalisch schwierig ist, zwei verschiedene Gittermaterialien auszurichten.

Dr. Junxiong Ho, Hauptautor der Forschungsarbeit, sagte: „Unsere Technologie hilft, ein reales Problem zu lösen. Mehrere Forscher sagten mir, dass die Verarbeitung der Probe normalerweise etwa eine Woche dauert. Mit unserer Technologie können sie nicht nur die Herstellungszeit erheblich verkürzen, sondern auch die Leistung erheblich verbessern Genauigkeit der Probe.“

künstlerische Visionen

Die Wissenschaftler nutzen zunächst die „30-Grad-Rotationstechnik“, um die Ausrichtung der hBN-Deckschichten und des Graphens zu steuern. Anschließend verwenden sie eine „Inversionstechnik“, um die Ausrichtung der oberen hBN-Schichten und der unteren hBN-Schichten zu steuern. Basierend auf diesen beiden Methoden können sie die Gittersymmetrie steuern und die Bandstruktur des Graphen-Superwellenlängengitters anpassen. Sie zeigten auch, dass die angrenzende Graphitkante als Orientierung für die Stapelausrichtung dienen kann. In dieser Studie synthetisierten sie 20 Moiré-Proben mit einer Genauigkeit von besser als 0,2°.

Professor Arriando sagte: „Wir haben drei goldene Regeln für unsere Technologie aufgestellt, die vielen Forschern in der Gemeinschaft der zweidimensionalen Materialien helfen können.“ Es wird erwartet, dass unsere Arbeit auch vielen Wissenschaftlern zugute kommen wird, die an anderen stark korrelierten Systemen wie um den magischen Winkel verdrillten Doppelschicht-Graphen oder ABC-gestapelten Mehrschicht-Graphen arbeiten. Ich hoffe, dass diese technische Verbesserung die Entwicklung der nächsten Generation von Quantenwellenmaterie beschleunigen wird.

zukünftige Unternehmungen

Derzeit nutzt das Forschungsteam diese Technologie, um ein einschichtiges Ultrawellenlängen-Graphengitter herzustellen und die einzigartigen Eigenschaften dieses Materialsystems zu erforschen. Darüber hinaus erweitern sie die bestehende Technologie auch auf andere physikalische Systeme, um weitere neue Quantenphänomene zu entdecken.

Referenz: „Controlled Alignment of the Superfluid Lattice in Double-Aligned Graphene Heterostructures“ von Junxiong Hu, Junyou Tan, M. M. Al-Ezzi, Udvas Chattopadhyay, Jian Gou, Yuntian Zheng, Zihao Wang, Jiayu Chen, Reshmi Thottathil, Jiangbo Luo, Kenji Watanabe, Takashi Taniguchi, Andrew Thai Shen Wei, Shafik Adam und A. Arriando, 12. Juli 2023, hier verfügbar. Naturkommunikation.
doi: 10.1038/s41467-023-39893-5

HINTERLASSEN SIE EINE ANTWORT

Please enter your comment!
Please enter your name here